企业大数据分析平台如何构建(企业使用大数据平台基于( )做分析报告)

fangcloud 1647 2022-08-14

本文转载自网络公开信息

企业大数据分析平台如何构建(企业使用大数据平台基于( )做分析报告)

在构建大数据分析平台之前,首先要明确业务需求场景和用户的需求,通过大数据分析平台,获取有价值的信息,需要访问数据,明确基于现场业务需求的大数据平台具有基本功能,确定平台的流程使用大数据处理工具和框架。

大数据分析处理平台就是整合当前主流的各种具有不同侧重点的大数据处理分析框架和工具,实现对数据的挖掘和分析,一个大数据分析平台涉及到的组件众多,如何将其有机地结合起来,完成海量数据的挖掘是一项复杂的工作。在搭建大数据分析平台之前,要先明确业务需求场景以及用户的需求,通过大数据分析平台,想要得到哪些有价值的信息,需要接入的数据有哪些,明确基于场景业务需求的大数据平台要具备的基本的功能,来决定平台搭建过程中使用的大数据处理工具和框架。

(1)操作系统的选择操作系统一般使用开源版的RedHat、Centos或者Debian作为底层的构建平台,要根据大数据平台所要搭建的数据分析工具可以支持的系统,正确的选择操作系统的版本。

(2)搭建Hadoop集群Hadoop作为一个开发和运行处理大规模数据的软件平台,实现了在大量的廉价计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心的设计是HDFS和MapReduce,HDFS是一个高度容错性的系统,适合部署在廉价的机器上,能够提供高吞吐量的数据访问,适用于那些有着超大数据集的应用程序;MapReduce是一套可以从海量的数据中提取数据最后返回结果集的编程模型。在生产实践应用中,Hadoop非常适合应用于大数据存储和大数据的分析应用,适合服务于几千台到几万台大的服务器的集群运行,支持PB级别的存储容量。Hadoop家族还包含各种开源组件,比如Yarn,Zookeeper,Hba se,Hive,Sqoop,Impala,Spark等。使用开源组件的优势显而易见,活跃的社区会不断的迭代更新组件版本,使用的人也会很多,遇到问题会比较容易解决,同时代码开源,高水平的数据开发工程师可结合自身项目的需求对代码进行修改,以更好的为项目提供服务。

(4)数据存储除了Hadoop中已广泛应用于数据存储的HDFS,常用的还有分布式、面向列的开源数据库Hba se,Hba se是一种key/value系统,部署在HDFS上,与Hadoop一样,Hba se的目标主要是依赖横向扩展,通过不断的增加廉价的商用服务器,增加计算和存储能力。同时hadoop的资源管理器Yarn,可以为上层应用提供统一的资源管理和调度,为集群在利用率、资源统一等方面带来巨大的好处。Kudu是一个围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,可以运行在普通的服务器上,作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Redis是一种速度非常快的非关系型数据库,可以将存储在内存中的键值对数据持久化到硬盘中,可以存储键与5种不同类型的值之间的映射。

(6)数据的可视化以及输出API对于处理得到的数据可以对接主流的BI系统,比如国外的Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数(可免费试用)等,将结果进行可视化,用于决策分析;或者回流到线上,支持线上业务的发展。成熟的搭建一套大数据分析平台不是一件简单的事情,本身就是一项复杂的工作,在这过程中需要考虑的因素有很多,比如:稳定性,可以通过多台机器做数据和程序运行的备份,但服务器的质量和预算成本相应的会限制平台的稳定性;可扩展性:大数据平台部署在多台机器上,如何在其基础上扩充新的机器是实际应用中经常会遇到的问题;安全性:保障数据安全是大数据平台不可忽视的问题,在海量数据的处理过程中,如何防止数据的丢失和泄漏一直是大数据安全领域的研究热点。

企业大数据分析平台如何构建. 中琛魔方大数据()表示企业选择构建大数据平台的方案有不同的原因,选择合理的类型,不仅要充分考虑建设数据平台的目的,而且要充分了解各种方案。

本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表亿方云的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱daifeng@360.cn 处理。
上一篇:Excel在单元格内连续输入数值时如何让活动单元格始终保留在当前(在excel中若想在活动单元格中输入系统时间可以按下)
下一篇:鼠标空心十字怎么变回箭头(鼠标空心十号怎样改为箭头)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~